a stereoselective total synthesis of $\bigtriangleup^9\text{-progesterone}$ via an intramolecular cycloaddition reaction

Hideo Nemoto^{a)}, Mitsuo Nagai^{a)}, Keiichiro Fukumoto^{a)*}, and Tetsuji Kametani^{b)}

- a) Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan b) Institute of Medicinal Chemistry, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan
- Summary: A stereoselective total synthesis of 19-nor- $\Delta^{9(10)}$ -progesterone (14) was achieved through des-A B-aromatic steroid (3) which was obtained by an intramolecular cycloaddition of the o-quinodimethane generated in situ from the thermolysis of 3-isopropenyl-5-(4-metho-xybenzocyclobutenyl)pentan-2-one-2-ethylene ketal (2), and the compound (14) thus obtained was further converted into Δ^9 -progesterone (18).

In the course of our synthetic studies of steroids \underline{via} intramolecular cycloaddition reactions, 1 recently our attention has been focused on the stereoselective construction of des-A B-aromatic steroids 2 because of their potential importance as intermediates for a synthesis of C_{11} -functionallized steroids. Here we wish to report an efficient synthesis of des-A-ring steroid (6) \underline{via} the des-A B-aromatic steroid (3) and its conversion into \triangle^9 -progesterone (18).

The mono-ketal (1)^{2a} was subjected to Nozaki's olefination procedure³ [Zn, TiCl₄, CH₂Br₂, THF, CH₂Cl₂, room temp.] and the reaction was found to proceed in 81% yield giving the isopropenyl derivative (2). The thermolysis of 2 was conducted in o-dichlorobenzene under refluxing and the cyclized compound (3)(angular methyl resonances at 0.63, 1.06 and 1.16) was obtained in 99% yield as a stereoisomeric mixture, which was successively hydrolized [10% HCl, MeOH, room temp.] to give the ketones (4), (5), and (6) in the ratio of 1:1:10.

The structure of these products was assigned tentatively at this point by comparing with previously obtained compounds a respectively (an angular methyl resonance at 0.95, 0.76 and 0.52 ppm for 4,5 and 6). Since we could find effective procedures for producing the ketone (6) selectively, the conversion of 6 into 19-nor- $\Delta^{9(10)}$ -progesterone (14) was investigated as follows. The hydroxy compound (7) obtained [NaBH₄, MeOH, room temp.] from 6 in 99% yield

was converted [MEMCl, Hünig base, $\mathrm{CH_2Cl_2}$, room temp.] in 99% yield into the ether (8). The Birch reduction [Li, EtOH, liq. $\mathrm{NH_3}$, THF, -78°] of 8 and an acid hydrolysis [($\mathrm{CO_2H}$)₂, EtOH, $\mathrm{H_2O}$, room temp.] gave the β , γ -unsaturated enone (9) [m/e 336 (M⁺)] in 82% overall yield. The alkylation of 9 with methyl α -trimethylsilylvinyl ketone under two different conditions, [LDA, HMPA, THF, -78°C; $^{\mathrm{n}}$ Bu $_4$ NF, THF, room temp.] and [KN(SiMe $_3$)₂, Et $_3$ B, THF, -78°C; $^{\mathrm{n}}$ -Bu $_4$ NF, THF, room temp.] afforded a mixture of 10[m/e 476 (M⁺)] and 11[m/e 406 (M⁺)] in the ratio of 3:2 in 50% yield and 1:1 in 63 % yield, respectively.

The monoalkylated compound (11) was cyclized [t-BuOK, t-BuOH, room temp.] and hydrolized [10% HCl, MeOH, reflux] to give in 27% overall yield the tetracyclic compound (13) [m/e 300 (M $^+$)] via 12. This product (13) was finally oxidised [Jones reagent, acetone, room temp.] to furnish 19-nor- $\Delta^{9(10)}$ -progesterone (14), which was identified by IR(CHCl $_3$) and 1 H-NMR(CDCl $_3$, 100 MHz) spectral comparison with the authentic sample. Thus, we could determine unambiguously the whole structure of the compound (6), whose structure had been previously assigned tentatively. 2a

The transformation of 14 into \triangle^9 -progesterone (18) was straightforward and as follows. The diketal (15) [m/e 386 (M⁺)], obtained in 80% yield by ketallization [HO(CH₂)₂OH, CSA, benzene, reflux] of 14, was oxidised [MCPBA, NaHCO₃, H₂O, CH₂Cl₂, 0°C] to give in 40% yield the monoepoxide (16) [m/e 402 (M⁺)] which was then successively reacted with Grignard reagent (MeMgBr, Et₂O,

Scheme 2

(8) R=MEM

room temp.] and acid treatment [10% HCl, MeOH, reflux] to furnish in 24% overall yield the target compound (18) which was identified by IR(CHCl₃) and 1 H-NMR(CDCl₃, 100 MHz) spectral comparison with the authentic sample. 7

Thus, we could develop an effective method for the synthesis of \triangle^9 -progesterone (18).

Acknowledgement: We are grateful to Mr. V. Torelli, Roussel Uclaf, for providing us the authentic sample of $19-\text{nor}-\bigwedge^{9(10)}$ -progesterone.

References

- (1) a) For review, see T. Kametani and H. Nemoto, <u>Tetrahedron</u>, 37, 3 (1981) references cited therein; b) T. Kametani, K. Suzuki, and H. Nemoto, <u>J. Am. Chem. Soc.</u>, 103, 2890 (1981); c) Ibid., <u>J. Org. Chem.</u>, 47, 2331 (1982).
- (2) a) T. Kametani, H. Matsumoto, T. Honda, M. Nagai, and K. Fukumoto, <u>Tetrahedron</u>, 37, 2555 (1981); b) H. Nemoto, M. Nagai, K. Fukumoto, and T. Kametani, <u>J. Org. Chem.</u>, in press; c) Idem, <u>Tetrahedron</u> in press.
- (3) K. Takai, Y. Hotta, K. Oshima, and H. Nozaki, <u>Tetrahedron Lett.</u>, 2417 (1978).
- (4) G. Stork, and J. Singh, J. Am. Chem. Soc., 96, 6181 (1974).
- (5) E. Negishi and M. J. Idacavage, Tetrahedron Lett., 845 (1979).
- (6) R. Bucourt, J. Tessier, and G. Nomine, Bull. Soc. Chim. Fr., 1923 (1963).
- (7) Commercially available 18 was purified by crystallization(benzene-CH₂Cl₂) and used as an authentic sample.

(Received in Japan 2 July 1985)